Functional organization of neuronal and humoral signals regulating feeding behavior.
نویسندگان
چکیده
Energy homeostasis--ensuring that energy availability matches energy requirements--is essential for survival. One way that energy balance is achieved is through coordinated action of neural and neuroendocrine feeding circuits, which promote energy intake when energy supply is limited. Feeding behavior engages multiple somatic and visceral tissues distributed throughout the body--contraction of skeletal and smooth muscles in the head and along the upper digestive tract required to consume and digest food, as well as stimulation of endocrine and exocrine secretions from a wide range of organs. Accordingly, neurons that contribute to feeding behaviors are localized to central, peripheral, and enteric nervous systems. To promote energy balance, feeding circuits must be able to identify and respond to energy requirements, as well as the amount of energy available from internal and external sources, and then direct appropriate coordinated responses throughout the body.
منابع مشابه
Neuronal circuits involving neuropeptide Y in hypothalamic arcuate nucleus-mediated feeding regulation.
Neuropeptide Y (NPY) is a 36-amino-acid neuropeptide that was first discovered in porcine brain extracts and later in the porcine intestine. It is widely distributed in both the central and peripheral nervous systems and exerts a powerful orexigenic effect. NPY-producing neuronal cell bodies are abundantly localized in the medial arcuate nucleus of the hypothalamus, this being a brain center th...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملP104: Obesity-Induced Neuroinflammation: Focus on Hypothalamic Inflammation
Obesity is a Health issue around the world. Obesity is not limited to body weight, generally associated with low grade inflammation and with a cluster of disorders generally referred to as "metabolic syndrome". Regarding obesity and relapse, long-term concentration was set on the hypothalamus. Most recently,obesity- Originated neuroinflammation has been shown to affect other brain str...
متن کاملGlucagon-like peptide-1, corticotropin-releasing hormone, and hypothalamic neuronal histamine interact in the leptin-signaling pathway to regulate feeding behavior.
Glucagon-like peptide-1 (GLP-1), corticotropin-releasing hormone (CRH), and hypothalamic neuronal histamine suppress food intake, a target of leptin action in the brain. This study examined the interactions of GLP-1, CRH, and histamine downstream from the leptin-signaling pathway in regulating feeding behavior. Infusion of GLP-1 into the third cerebral ventricle (i3vt) at a dose of 1 mug signif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of nutrition
دوره 33 شماره
صفحات -
تاریخ انتشار 2013